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This study, based on mere considerations induced by the Special Theory of Relativity, has previously 
established the following relationship between the “minimum electronic energy” 

minE , and the related 

“classical vibration frequency”  , in regards to electronic states of a given diatomic molecule: 
22

k0

2 RωgM4E minmin ||  . Where 
0M  is the reduced mass of the molecule, 

minR  the “internuclear distance” 

associated with  , and 
kg  a Lorentz invariant dimensionless coefficient, insuring the equality; it 

depends only on the electronic structure of the molecule; therefore for electronic states configured 
similarly, we expect the coefficient 

kg , to remain practically the same; it takes values, roughly around 

unity. The framework in question is interesting, given that, for alike electronic states of a given 

molecule,  
m i nE  versus 2

min

2

0 RωM , should behave linearly. This further, should allow the determination 

of
kg , for the states in consideration. The expression is anyway valid for any diatomic molecule, along 

with a given 
kg . On the other hand, the “ground states” of bonds delineating chemical similarities, 

display “alike electronic configurations”. This means that, 
kg  for such bonds, should remain practically 

the same. Thus, regarding the ground states of such molecules, 
minE  versus 2

min

2

0 RωM  should further be 

expected to behave linearly (the quantities of concern, now being exclusively assigned to the ground 
states of the molecules in question).  We check this prediction successfully for the entire body of 
diatomic molecules and calculate 

kg , for different “chemical families”. The relationship we discover has 

got as much predictive power as that provided by the classical quantum mechanical tools; it is though 
incomparably simpler and faster.  
 
Key words: Special theory of relativity, quantum mechanics. 

 
 
INTRODUCTION 
 
In this study, it has been shown earlier that the special 
theory of relativity (STR) imposes the following. Already 

at rest, the “period of time” 0T , the “characteristic length” 

0R , the “clock mass” 0M , to be associated with the 

“internal dynamics” of an atomistic or molecular quantum 

mechanical object, and the “electronic energy“ 0E ,  
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constituting the basis of the dynamics in question, ought 
to relate to each other, in just a given manner (Yarman, 
1992a,b;1998,1999; Yarman et al., 2002a,b,c; Yarman, 
2004a,b,c,d; Yarman et al., 2011) which is namely that 
displayed by:  
 

0

0

0
0

E
~T R

M
 ;
.                                      (1)

 

  
(Relationship imposed by the STR). 



 

 
 
 
 
It can be checked that the proportionality constant, 
coming into play, is dimensionless; the somewhat new 
denominations introduced here, have been defined 
earlier.  

Equation (1) outlines the architecture delineated by any 

given entity with respect to “period of time” 0T , 

“characteristic length” 0R , “clock mass” 0M , and “total 

energy“ 0E , one can  associate with the “internal 

dynamics” of an atomistic or molecular quantum 
mechanical object. It can be used right away, for a set of 
entities, for which the dimensionless proportionality 
constant it involves, can be considered the same. This is 
the heart of the presen approach.   

As stated earlier, we have arrived at Equation (1), on 
pure relativistic considerations,. Note then that the 
proportionality constant coming into play is determined to 
be necessarily a Lorentz invariant constant. In this study, 
we are going to provide a direct derivation of Equation(1), 
for diatomic molecules, essentially on a quantum 
mechanical basis, and show that the proportionality 
constant it involves, indeed depends only on the 
electronic configuration of the bond coming into play. 
Thus, for a set of molecules embodying electronically 

alike bonds, we should expect 0T  to vary linearly with 

respect to 
000 EM R/ ; this behavior yields the 

proportionality constant of the set of concern. 
In this study, we are embarrassed to refer mainly to our 

previous work. The fact remains that we found practically 
nothing similar to the line we pursue herein. 
Subsequently, we will first derive Eq.(1), on a quantum 
mechanical basis (Sections 2 and 3), after which we draw 
a conclusion. 
 
 
DERIVATION  
 
Let E(R) be the electronic energy of the diatomic 
molecule of concern, at a given state, with respect to the 
internuclear distance R (Herzberg, 1964). This is a 
quantum mechanical output, of course. Thus, E(R) can 
be as usual defined as the eigenvalue of the Schrödinger 
equation describing just the electronic configuration of the 
molecule, with fixed nuclei, within the frame of the Born 
and Oppenheimer approximation (Born and 
Oppenheimer, 1927).  

E(R), following Morse’s parabolic approximation 
(Morse, 1929), can be expressed, in terms of the “force 

constant” k , associated with the classical vibration 
frequency    (Davis, 1965), as: 

 

2RRk
2

1
ERE )()( minmin  .                                 (2) 

 
(Morse approximation  to  the  electronic  energy,  versus  
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the internuclear distance) 

It should be emphasized that this relationship, does not 
display characteristics such as “anharmonicity” and 
“dissociation”. Nevertheless, at a given ground or excited 
electronic state, Equation (2), will remain very 
satisfactorily correct, in regards to the lowest vibrational 
levels, taking place at this state, given that the Morse’s 
parabolic approximation, is particularly valid, around 

minE , and that we will specifically focus on the ground 

vibrational level at the electronic state of concern.  
The parabola, approximately describing E(R) (which 

ought to be anyway a negative quantity, for it represents 
the total electronic energy of the molecule), intercepts the 

R axis at 00R , which we can define with respect to minR , 

as: 
 

min00 RpR     .                 (3) 

 
[Hypothetic internuclear distance which makes the 
approximated E(R), vanish] 

Note that this is just a definition. Note also that, there 
are two roots. These do not mean anything physically, 
since the Morse parabola is just an approximation. Yet it 
is still helpful to proceed with Equation (3). It is just a 
trick, to transform Equation (2), as we will soon make use 
of. The parameter p, is unknown, but we do not really 
have to determine it. In any case, it is perfectly legitimate 
to write Equation (3). 
  
Equations (2) and (3), provide us with the possibility of 

expressing minE , as:   

 

2

min

2

min R)1p(k
2

1
|E|  .                                        (4) 

 
(Expression of the minimum energy in terms of the force 
constant and the minimum internuclear distance).  

Next we define a new quantity kg  as: 

   

2

)1p(
g

2

k


  .                          (5) 

 

A quantum mechanical elaboration on kg  is provided in 

Yarman (2004c). Anyway, we expect kg to remain 

practically the same, for electronic states configured 
similarly. We can thus write Equation (4) as: 
 

2

kRkgE minmin ||  .                                             (6) 

 
Thus, using the familiar expression for the classical 
vibration frequency (Davis, 1965); 
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0M

k

2

1
ω


  ,                           (7) 

 

(Classical vibration frequency) 
 

In Equation (4), we can finally arrive at the relationship: 
 

2

min

2

k0

2

min RωgM4|E|   .                (8) 

 

[Equation (1) obtained, via quantum mechanical 
considerations regarding electronically excited states of a 
given molecule] 

Given that the frequency is the inverse of the period of 
time, this relatioship is, in fact, identical to Equation (1). 
We have arrived to it, on the basis of a given electronic 
state of the molecule at hand. Thus it may be considered 
for all electronic states of this molecule. Thus, we can 

right away conjecture that the plot of |E| min  versus 

2

min

2Rω , should come out, as a straight line with regards 

to the electronic states of the given molecule, which 
would configured similarly. Yet the framework of Equation 
(8) is more general than this, for it is valid for any 
molecule, and any state of a given molecule. And it is 
interesting to consider it, when the given states are 
configured similarly. There are two distinct interesting 
sets of these. The first one, in effect, consists in the 
electronic excited states of a given molecule, configured 
similarly. That is, even if the molecule is at an excited 
state, the bond configuration, may remain about the 
same, and the coefficient gk could then be considered as 
a constant. This is one thing. The second set in question, 
consists in the ground states of a given type of 
molecules, whose bond electronic configurations, are 
alike. This option will be considered particularly in the 
later part of the study.  

The important thing about Equation (8) is that, it 
embodies no universal constant, say the Planck constant, 
or electric charges. It is a unique relationship, in that 
sense, made of four fundamental quantities, that is, 
mass, size, period of time (or the same frequency), and 
total energy. It universally displays the interrelation in 
between the quantities in consideration.  

Recall that, we arrived at it earlier, based on mere 
considerations, just within the frame of the STR. In that 
sense Equation (8) is most general, and should hold at 
any level, for mass, size, period of time, and total energy, 
associated with that level, and it becomes interesting for 
any set of entities for which the proportionality coefficient 
gk may be conjectured to remain the same. Though we 
restrict ourselves here to the study of Equation (8), with 
regards to diatomic molecules only. 
 
 

GROUND STATES OF DIATOMIC MOLECULES 
BELONGING TO A GIVEN CHEMICAL FAMILY 
 

Equation (8) (as shown  earlier),  is  in  fact  valid  for  any  

 
 
 
 
electronic state of any given molecule. Thus, it is surely 
valid for the ground state of the molecule of concern. 
Then it becomes particularly interesting for the ground 
states of molecules configured similarly. The ground 
states of diatomic molecules belonging to a given 
“chemical family”, constitute such states. In different 
terms, a chemical family embodies molecules, whose 
bonds are configured similarly. Molecules made of alkali 
atoms, for instance, constitute a chemical family.   

The idea remains that, the proportioanlity constant of 
Equation (8) can be considered as a constant, for the set 

of molecules one tackles with. Let then 0E  be the 

magnitude of the ground state electronic energy, 0  the 

classical vibration frequency at 0E , and 0R  the ground 

state internuclear distance of the molecule of concern.  
With these definitions, Equation (8) becomes: 
 

2

0

2

0k0

2

0 RωgM4|E|  .                                            (9) 

 
[Equation (1) obtained, via quantum mechanical 
considerations regarding the ground state of a given 
molecule] 

Thus, we conjecture that the plot of |E| 0  versus 

2

0

2

0Rω , should come out as a straight line for the slope of 

which will furnish the coefficient kg . 

We can equally write: 

 

0

0

0k
0 R

|E|

Mg
π2T  ,                                                (10) 

 
(Relationship we derived quantum mechanically and we 
consider for the ground states of molecules belonging to 
a given chemical family, where the electronic 
configurations of the bonds can be considered to remain 

the same) where 0T  is the inverse of 0 ; this is 

obviously Equation (8), where though the proportionality 
constant is specifically displayed. 

This equation suggests that, for chemically alike 

molecules, the period of vibration 0T , should behave as 

proportionally to 
000 R|E|M . The reason we originally 

considered Equation (10), instead of Equation (9), is 
simply that, it expresses the elementary quantity of 
“period of time”, in terms of the elementary quantities 
“space” (size), and “mass” (reduced mass), next to 
“energy”. As explained through the Introduction earlier, 
the frame displayed by Equation (10) is Lorentz invariant.  

The fact that the mentioned quantities are structured in 
the given way, insures the end results of the STR, were 
the molecule brought to a uniform translational motion 
(Herzberg, 1964; Born and Oppenheimer, 1927), or the 
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Figure 1. Classical vibration period versus (M0/E0)
1/2R0 for alkali molecules. 
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Figure 2. Classical vibration period versus (M0/E0)
1/2R0 for alkali hydrides. 

 
 
 

end results of the General Theory of Relativity, were the 
molecule embedded in a gravitational field, in fact any 
field the object may interact with, and this is how 
originally, we have arrived straight at Equation (10). 

We have calculated the magnitude of the electronic 
energy, at the ground state of the diatomic molecule AB 
(made of the atoms “A” and “B”), in consideration, from 
the relationship: 

 

0B0A00 DIIE   ,             (11) 

 

Where 0D  is the dissociation energy of the diatomic 

molecule AB, and A0I  and B0I  are respectively the 

ionization energies of the atoms, A and B (CRC, 2009). 
All of the quantities here are evidently positive, and 
below, when chiefly in the tables and in the figures, we 

will write 0E , we will refer to the magnitude of the energy 

of concern (and not to the algebraic value of it). 
The attached figures (Figures 1 to 11), successfully 
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Figure 3. Classical vibration period versus (M0/E0)
1/2R0 for BeH-like hydrides. 
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Figure 4. Classical vibration period versus (M0/E0)
1/2R0 for BH-like hydrides. 

 
 
 

display our prediction for all of the diatomic molecules, 
reassembled on the basis of their chemical similarities 

(Davis, 1965; Spirko et al., 1993; Diemer et al., 1984). 
Data used to draw these figures are reassembled in 
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Figure 5. Classical vibration period versus (M0/E0)
1/2R0 for alkali halogens. 
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Figure 6. Classical vibration period versus (M0/E0)
1/2R0 for BeF-like molecules. 

  
 
 
Tables 1 to 11 (Herzberg, 1991). For each chemical 

family of concern, kg  is calculated and presented in 

Table 12. 
 
 

CONCLUSION 
 

In the earlier part of this work, we had derived Equation  

(1) within a most general framework, through simple 
considerations, based on just the STR. Here, to have a 
cross check, we have derived this relationship, for a 
diatomic molecule, based on simple quantum mechanics, 
and landed at Equation (10). The advantage of it is that, it 
does not embody any universal constants (such as the 
Planck Constant, for instance); in other terms, it is free of 
any such constants. It is based on four fundamental 
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Figure 7. Classical vibration period versus (M0/E0)
1/2R0 for BF-like molecules. 
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Figure 8. Classical vibration period versus (M0/E0)

1/2R0 for CO -like molecules. 
 
 
 

quantities, mass (clock mass), space (clock size), time 
(clock period of time), and energy (energy, on which the 

clock labor takes place). The proportionality constant 
coming into play is dimensionless. We have shown in the 
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1/2R0 for N2 -like molecules. 
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Figure 10. Classical vibration period versus (M0/E0)
1/2R0 for O2 -like molecules. 

 
 
 

earlier part that, it must be also Lorentz invariant. 
Furthermore here on the basis of a diatomic molecule, we 

have shown that, it depends only on the electronic 
configuration of the molecule. Thus for bonds of 
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Figure 11. Classical vibration period versus (M0/E0)
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Table 1. Data for Figure 1. 
 

Molecules cxT 3

0 10 )(cm  0M (amu) 
)(

0

0

A

R
 

0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred 

 to the average 

H2 0.24 0.5 0.74 31.64 2.58 0.26 

Li2 2.89 3.51 2.67 11.81 1.99 0.03 

Na2 6.34 11.49 3.08 11.01 2.01 0.02 

K2 10.88 19.49 3.92 9.19 1.91 0.07 

NaK 8.06 14.48 3.50 10.03 1.92 0.06 

NaRb 9.54 17.86 2.64 4.40 1.79 0.13 

Rb2 18.06 42.47 4.21 9.64 1.96 0.04 

Cs2 23.91 66.47 4.65 12.55 2.22 0.08 

Average     2.04 0.09 
 
 
 

Table 2. Data for Figure 2. 
 

Molecules 
cxT 4

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred  

to the average 

LiH 7.36 0.88 1.59 21.48 22.90 0.07 

NaH 8.83 0.97 1.89 20.93 21.70 0.02 

KH 10.46 0.98 2.24 19.79 20.98 0.02 

RbH 11.01 0.99 2.37 19.66 20.70 0.03 

CsH 11.55 1.00 2.49 19.39 20.43 0.04 

Average     21.34 0.03 
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Table 3. Data for Figure 3. 
 

Molecules 
cxT 4

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred  

to the average 

BeH 5.03 0.91 1.34 25.11 19.72 0.05 

MgH 6.98 0.97 1.73 23.72 19.95 0.06 

CaH 7.94 0.98 2.00 21.4 18.55 0.02 

SrH 8.53 0.99 2.15 20.96 18.26 0.03 

BaH 8.77 1.00 2.23 20.62 17.86 0.05 

Average     18.87 0.04 
 
 
 

Table 4. Data for Figure 4. 
 

Molecules 
cxT 4

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred  

to the average 

BH 4.41 0.92 1.23 25.39 18.84 0.03 

AlH 6.16 0.97 1.65 22.63 18.03 0.02 

InH 7.02 0.99 1.84 21.85 17.93 0.02 

TlH 7.43 1.00 1.87 21.87 18.58 0.01 

Average     18.34 0.02 
 
 
 

Table 5. Data for Figure 5. 
 

Molecules 
cxT 4

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred  

to the average 

CsF       

CsBr 52.63 49.92 3.14 19.61 10.50 0.16 

CsI 71.63 64.94 3.41 17.72 10.98 0.12 

NaCl 26.46 13.95 2.51 21.68 13.14 0.05 

NaBr 31.98 17.86 2.64 20.80 13.07 0.04 

NaI 35.15 19.45 2.90 18.75 11.90 0.05 

KF 25.64 12.78 2.55 27.66 14.79 0.18 

KCl 35.95 18.59 2.79 21.72 13.93 0.11 

KBr 43.55 26.26 2.94 20.11 12.96 0.03 

KI 47.48 29.89 3.23 18.12 11.45 0.09 

RbCl 39.53 25.07 2.89 21.09 12.55 0.00 

Average     12.57 0.08 
 
 
 

molecules configured similarly, one should expect that 
the coefficient in question, must remain the same, for 
such bonds will bear alike electronic configurations. 
Molecules, such as alkali molecules, belonging to a given 
chemical family well fulfill the characteristic of being 
made of alike bonds.   

Figures 1 to 11, plotted for molecules belonging to a 
given chemical family, show that, Equation (10), implying 

the constancy of the quantity, 

}amu/evAc/x10){(cm|/|EM)(/R(T
o

31

0000

 , for 

members of a given chemical family, indeed holds 
satisfactorily; this constancy C, turns out to be 

kg2πC  ; where Å stands for Angstrom, and c for the 

speed of light. More specifically, kg , stays indeed fairly 
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Table 6. Data for Figure 6. 
 

Molecules cxT 4

0 10 )(cm  
 

0M (amu) 
)(

0

0

A

R
 

 

0E (ev) 

 

0

0

0

0 ET

MR
 

|Relative error| as referred 

 to the average 

BeF 8.00 6.11 1.36 32.14 13.49 0.02 

BeCl 12.00 7.17 1.70 26.58 13.59 0.03 

MgF 14.10 10.60 1.75 29.26 13.39 0.02 

CaF 17.20 12.88 2.02 26.68 12.25 0.07 

Average     18.87 0.04 
 

 

Table 7. Data for Figure 7. 
 

Molecules cxT 4

0 10 )(cm  0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred  

to the average 

BF 7.26 6.72 1.26 30.01 12.18 0.07 

BCl 12.06 8.38 1.72 25.25 12.17 0.07 

BBr 14.77 9.66 1.88 24.20 12.43 0.09 

AlCl 20.95 15.24 2.13 22.04 6.44 0.44 

AlBr 26.64 20.11 2.29 20.19 11.67 0.02 

InCl 31.71 26.82 2.31 23.28 12.79 0.12 

InI 56.72 60.32 2.86 18.93 11.11 0.03 

TlCl 35.09 29.87 2.55 22.81 12.03 0.05 

TlBr 52.27 57.98 2.68 21.10 11.77 0.03 

TlI 66.67 78.31 2.87 19.19 11.50 0.01 

Average     11.41 0.09 

 
 
 
Table 8. Data for Figure 8. 
 

Molecules cxT 4

0 10 )(cm  0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative Error| as referred  

to the Average 

CO 4.67 6.86 1.13 94.28 15.32 0.00 

CS 7.86 8.73 1.53 77.13 15.27 0.00 

SiO 8.13 10.18 1.51 80.63 15.15 0.00 

SiS 13.43 14.93 1.93 64.79 14.49 0.05 

GeO 10.23 13.15 1.65 79.47 15.24 0.00 

SnO 12.27 14.09 1.84 76.30 15.52 0.02 

SnS 20.62 25.25 2.06 58.65 15.26 0.00 

PbO 14.00 14.85 1.92 75.47 16.44 0.08 

PbS 23.49 27.72 2.39 60.82 14.56 0.05 

Average     15.25 0.02 

 
 
 
the same for a given chemical family, and varies 
between, approximately, 0.3 and 1, with regards to the 
entire body of the chemical families we have considered. 

One can show that gk happens to be roughly, inversely 
proportional to the dissociation energy of the molecule 
(Yarman, 2004c). It is indeed easy to see that, 
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Table 9. Data for Figure 9. 
 

Molecules 
cxT 3

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred  

to the average 

N2 0.43 7.00 1.09 190.53 2.06 0.02 

P2 1.29 15.49 1.89 125.87 1.94 0.04 

PN 0.75 9.65 1.49 158.29 2.05 0.01 

Average     2.02 0.02 

 
 
 
Table 10. Data for Figure 10. 
 

Molecules 
cxT 3

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 

|Relative error| as referred 

to the average 

O2 0.64 8.00 1.21 102.56 1.90 0.13 

S2 1.39 15.99 1.89 72.46 1.60 0.06 

Se2 2.57 39.97 2.15 82.22 1.71 0.02 

Te2 4.00 63.83 2.59 58.35 1.48 0.12 

SO 0.90 10.66 1.49 86.43 1.72 0.03 

Average     1.67 0.07 

 
 
 
Table 11. Data for Figure 11. 
 

Molecules 
cxT 4

0 10 )(cm  

 
0M (amu) 

)(
0

0

A

R
 0E (ev) 

0

0

0

0 ET

MR
 |Relative error| as referred to the average 

F2 11.21 9.50 1.44 37.59 15.50 0.28 

Cl2 17.96 17.49 1.99 28.4 11.50 0.05 

Br2 31.15 39.96 2.28 25.59 10.93 0.09 

I2 46.87 63.47 2.67 22.44 10.44 0.10 

BrF 15.04 15.35 1.76 31.42 12.23 0.01 

ClF 12.93 12.31 1.63 32.99 12.98 0.08 

ICl 26.23 27.42 2.32 25.56 10.92 0.09 

Average     12.07 0.11 

 
 
 
the greater p (Equation 3), the smaller is the dissociation 
energy.  

Thus, as one can observe from Table 12; gk decreases 
as the bond becomes stronger. This is why we would like 
to call it bond looseness factor (Herzberg, 1964) Briefly 
speaking, the higher, the number of the covalent bonds, 
making the overall bond of the diatomic molecule, the 
smaller will gk be. Or the smaller the number of free 

electrons an atom possesses, the looser will be the bond 
it will make, with say, a halogen atom, thus the higher will 
gk be, etc. 

At any rate our goal here, was not really to disclose just  
a molecular characteristic; the property (Equation 10), we 
came to unveil was in fact a mean to show that matter, 
more specifically molecules, ought to be built in a unique 
manner in order to insure the end results of the STR, 
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Table 12. The constant kg for different families. 

 

 

 

Family 

Average of  

0

0

0

4

0 10

M

E

R

cxT
C  











2/1

2/1

amuxA

evxcm
 

 

Standard deviation on  

kg2C  

 

Dimensionless constant gk 

H2 20.48 0.32 1.01 

N2 20.17 0.05 1.06 

O2  16.70 0.19 0.64 

F2 12.07 0.38 0.32 

LiH 21.34 0.09 1.10 

BeH 18.87 0.01 0.93 

BH 18.34 0.04 0.90 

CO 15.25 0.11 0.62 

CsF 12.57 0.32 0.37 

BeF 13.18 0.08 0.45 

BF 11.41 0.48 0.36 
 
 
 

were the object at hand, brought to a uniform 
translational motion, or those of the General Theory of 
Relativity, were the object, embedded in a gravitational 
field, in fact in any field it interacts with.  

It is henceforth question of a distinct architecture 
framing how the main quantities, that is, mass (clock 
mass), space (characteristic length), time (period of time), 
and energy (base of the clock labor in quesiton, carried 
by the clock mass), painting the internal dynamics of the  
object in hand, are structured, in regards to each other.  

Along this line, one can write Equation (1), even without 
any knowledge of quantum mechanics, at once, just the 
way we did in the earlier part of this work. This, in effect, 
represents a Lorentz invariant cast (as we have shown in 
the earlier part of this work). Thus, it is nothing else, but a 
matter of intuition, to write it down. 

Testing it, is further, a matter of an easy exercise, given 

that  the classical vibrational period of time 0T , versus 

the quantity 
000 E/ RM , should behave linearly, were 

the proportionality constant coming into play, remained 
the same for a selected set of molecules, which indeed 
happens to be the case for molecules belonging to a 
given chemical family. 

This is what we have shown in this article, which would 
have otherwise turned out to be a mathematical 
impossibility, throughout much too cumbersome quantum 
mechanical setups; our approach both relativistically and 
quantum mechanically furthermore, seem to bear, as 
much predicitive power, as that of the corresponding 
classical quantum mechanical setups. 

Let us mention the following, for those who are not 
much familiar with the usual spectroscopic practice: In 
our plots, the dimension of the classical vibrational period 
T0 is provided in "cm" unit; in other words, a period that 
would have normally been expressed in "seconds", is 

here, multiplied by kc, that is, the "specified number" k × 
the "speed of light" expressed in cm/second;  thus to 
transform the unit of the given classical vibrational period, 
back to "second-unit", one has to divide it by kc. 
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